
Synthetic Cohomology Theory in Cubical Agda

Abstract—This paper discusses the formalization of synthetic
cohomology theory in a cubical extension of Agda which natively
supports univalence and higher inductive types. This enables
significant simplifications of many proofs from Homotopy Type
Theory and Univalent Foundations as steps that used to require
long calculations now hold simply by computation. We give a new
optimized group structure for cohomology with Z coefficients and
verify that it satisfies the Eilenberg-Steenrod axioms. We also
characterize the cohomology groups of the spheres, torus, Klein
bottle and real projective plane. As all proofs are constructive,
we obtain concrete computations which can serve as benchmarks
for future implementations.

I. INTRODUCTION

Homotopy Type Theory and Univalent Foundations
(HoTT/UF) [1] extends Martin-Löf type theory [2] with Vo-
evodsky’s univalence axiom [3] and higher inductive types
(HITs). This is based on a close correspondence between
types and topological spaces represented as Kan simplicial
sets [4]. With this interpretation points in spaces correspond
to elements of types, while paths and homotopies correspond
to (iterated) identity types between these elements [5]. This
enables homotopy theory to be developed synthetically using
type theory. Many classical results from homotopy theory
have been formalized in HoTT/UF using this correspondence:
the definition of the Hopf fibration [1], the Blakers-Massey
theorem [6], the Seifert-van Kampen theorem [7] and the
Serre spectral sequence [8], among others. Using these results,
many homotopy groups of spaces—represented as types—
have been characterized. However, just like in classical al-
gebraic topology, these groups tend to be complicated to
work with. Because of this, other topological invariants like
homology and cohomology have been invented.

Informally, the (co)homology groups of a space X de-
scribe its n-dimensional holes. For instance, the n-dimensional
hole in the n-sphere Sn corresponds to its n:th cohomology
group being non-trivial. These holes constitute a topological
invariant, making (co)homology a powerful technique for
establishing which spaces cannot be homotopy equivalent.

The usual formulation of singular (co)homology using
(co)chain complexes relies on taking the underlying set of
topological spaces when defining the singular (co)chains [9].
This operation is not invariant under homotopy equivalence
which makes it impossible to directly use when formalizing
(co)homology synthetically in HoTT/UF. Luckily, in the case
of cohomology, there is a classical homotopy invariant defini-
tion using Eilenberg-MacLane spaces which can be formalized
in HoTT/UF [10]. This was initially studied by members at
the IAS special year on HoTT/UF in 2012–2013 [11] and
has since been used in a variety of developments, including
working with the Eilenberg-Steenrod axioms [12] and defining

cellular cohomology [13]. This paper builds on some of this
prior work, but uses Cubical Agda—a recent extension of
the dependently typed programming language Agda [14] with
cubical features [15].

The Cubical Agda system is based on a variation of cubical
type theory formulated by Coquand et al. [16]. These type
theories can be seen as refinements of HoTT/UF where the
homotopical intuitions are taken very literally and made part
of the theory. Instead of relying on the inductively defined
Martin-Löf identity type [17] to define paths and homotopies,
a primitive interval type I is added. Paths and homotopies are
then represented as functions out of I, just like in traditional
topology. This has some benefits compared to HoTT/UF.
First, many proofs become simpler. For instance, function
extensionality becomes trivial to prove as opposed to in
HoTT/UF where it either has to be postulated or derived from
the univalence axiom [18]. Second, it gives computational
meaning to HoTT/UF which makes it possible to use the
system to do computations using univalence and HITs. Finally,
it makes it possible to write down a general schema for
HITs where the eliminators compute definitionally for higher
constructors [19], [20]. This is still an open problem for
HoTT/UF and HITs have to be added axiomatically which
leads to many bureaucratic transports that complicate proofs.

Mörtberg and Pujet explored practical implications of for-
malizing synthetic homotopy theory in Cubical Agda in [21].
This work led to empirical evidence for the above claims.
For instance, the proof of the 3 × 3 lemma for pushouts
was shortened from 3000 lines of code in HoTT-Agda [22]
to only 200 in Cubical Agda. Another proof that becomes
substantially shorter is the proof that the torus is equivalent to
the product of two circles. This elementary result in topology
turned out to have a surprisingly non-trivial proof in HoTT/UF
because of the lack of definitional computation for higher
constructors [23], [24]. With the additional computation rules
of Cubical Agda, this proof is now trivial [15, Section 2.4.1].

The present paper is a natural continuation of the prior work
on formalizing synthetic homotopy theory in Cubical Agda.
The two main goals are:

1) to characterize Z cohomology groups of types, and
2) to compute using these cohomology groups.

In classical algebraic topology the terms characterize and
compute are often used interchangeably when discussing
(co)homology. We are careful to distinguish these two notions.
When characterizing the cohomology groups of some type we
prove that it is isomorphic to some other group. As all of our
proofs are constructive, we can then use Cubical Agda to
actually compute with these isomorphisms.



The first of the two goals above is especially interesting
because the cubical proofs almost never rely on path induction,
but rather use the cubical primitives directly. This leads to
new proofs which are sometimes closer to their topological
counterparts. The second goal is related to a major open
problem in HoTT/UF—the computation of Brunerie’s number.
This is a synthetic definition of a number n : Z such that
π4(S3) = Z/nZ. Brunerie proved in his PhD thesis [25] that
the absolute value of this number is 2, but even though this
is a constructive definition, it has so far proved infeasible to
compute using cubical type theory despite considerable efforts.

Having the possibility to do proofs simply by computation
is one of the most appealing aspects of developing synthetic
homotopy theory in cubical type theory. As this is not always
possible in HoTT/UF, one often has to resort to doing long
calculations by hand, which leads to complex proofs. If proofs
instead can be carried out purely using computational means,
many of these long calculations become obsolete. This is a
reason why many proofs from synthetic homotopy theory are
substantially shorter in Cubical Agda. The Brunerie number
is currently the main example of an interesting number which
has proved infeasible to compute. Developing cohomology
theory in Cubical Agda allows us to invent many more
examples of such numbers. This should help identify where the
bottlenecks are and, in the long run, increase the computational
capabilities of Cubical Agda and similar systems.

Outline The paper is organized as follows:
• Section II details the Cubical Agda formalization of the

notions from HoTT/UF which the rest of the paper uses.
• Section III defines Z cohomology and its basic properties.
• Section IV verifies that the definition satisfies the

Eilenberg-Steenrod axioms for cohomology theories.
These are then used to derive the Mayer-Vietoris se-
quence and to characterize the cohomology groups of Sn.

• Section V shows how the cohomology groups of various
types can be characterized directly without using the
abstract machinery of Section IV. Among these are the
first synthetic characterizations of the cohomology groups
of the Klein bottle and real projective plane.

• Section VI collects benchmarks of computations per-
formed using the cohomology groups from Section V.

• Section VII ends the paper with a comparison of related
work and concluding remarks.

All results have been formalized in the agda/cubical li-
brary available at https://github.com/agda/cubical/. Instruc-
tions for how to install Agda and the cubical library are
available at this URL. Much of the code in the paper is
literal Cubical Agda code, but we have taken some lib-
erties when typesetting to closer resemble standard mathe-
matical notations and conventions. In order to clarify the
connection between the paper and formalization we provide
a summary file: https://github.com/agda/cubical/blob/master/
Cubical/Papers/ZCohomology.agda. This file typechecks with
the --safe flag which ensures that there are no postulates
or unfinished goals.

II. HOMOTOPY TYPE THEORY IN CUBICAL AGDA

The Agda system [14] is a dependently typed programming
language in which both programs and proofs can be written
using the same syntax. Dependent function types (Π-types) are
written (x : A)→ B while non-dependent function types are
written A → B. Implicit arguments to functions are written
using curly braces {x : A} → B and function application is
written using juxtaposition, so f x instead of f(x).

The Agda system supports many features of modern proof
assistants and has recently been extended with an experimental
cubical mode. The goal of this section is to introduce notions
from HoTT/UF and their formalization in Cubical Agda

which the rest of the paper relies on. Because of space
constraints we omit many technical details and refer curious
readers to the paper of Vezzosi et al. [15] for a comprehensive
technical treatment of all of the features of Cubical Agda.

A. Important notions in Cubical Agda

The first addition to make Agda cubical is an interval type I
with endpoints i0 and i1. This corresponds to the real interval
[0, 1] ⊂ R in homotopy theory. However, in Cubical Agda

this is a purely formal object. A variable i : I represents a
point varying continuously between the endpoints. The interval
is equipped with three operations: minimum ( ∧ : I→ I→ I),
maximum ( ∨ : I → I → I) and reversal (∼ : I → I).

A function out of I into one of Agda’s universes of types
represents a line between two types. By iterating this, we
obtain squares, cubes and hypercubes of types making Agda

inherently cubical. Universes in Agda are written1 Type `
where ` is a universe level. In order to ease notation, we omit
universe levels in the paper. It is often useful to specify the
endpoints of a line. This is done via path types:

PathP : (A : I → Type) → A i0 → A i1 → Type

As paths are functions, they are introduced using lambda
abstractions:

λi→ t : PathP A t[i0 / i] t[i1 / i]

provided that t : A i for i : I. Given p : PathP A a0 a1 we
can apply it to r : I and obtain p r : A r. Also, we always have
that p i0 reduces to a0 and p i1 reduces to a1.

The PathP types should be thought of as representing
heterogeneous equalities since the two endpoints are in dif-
ferent types; this is similar to dependent paths in HoTT/UF
[1, Sect. 6.2]. Given A : Type we define the type of non-
dependent paths in A using PathP as follows:

≡ : A → A → Type
≡ x y = PathP (λ → A) x y

Representing equalities as paths allows us to directly reason
about equality. For instance, the constant path represents a
proof of reflexivity:

refl : {x : A} → x ≡ x
refl {x = x} = λ i → x

1Readers familiar with Agda will note that we rename Set to Type.

https://github.com/agda/cubical/
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda


Here, the syntax {x = x} tells Cubical Agda to bind the
implicit argument x (first x) to a variable x (second x) that
can be used on the right hand side of the definition.

We can also directly apply a function to a path in order to
prove that dependent functions respect path-equality, as shown
in the definition of cong below.

cong : {x y : A} {B : A → Type} (f : (x : A) → B x)
(p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)

cong f p = λ i → f (p i)

We write cong2 for the binary version of cong; its proof is
equally direct. These functions satisfy the standard property
that refl gets mapped to refl. They are also definitionally
functorial. The latter is an important difference to the corre-
sponding operations defined using path induction in HoTT/UF
which only satisfy the functoriality equations up to a path.

Path types also let us prove new things that are not provable
in standard Agda. For example, function extensionality has a
very simple proof:

funExt : {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

The proof of function extensionality for dependent and n-ary
functions is equally direct. Since funExt is a definable notion
in Cubical Agda it has computational content: it simply
swaps the arguments to p.

We can also use the operations on I to construct various
useful operations. For example, the reversal of a path is defined
using ∼ and represents the fact that ≡ is symmetric.

−¹ : x ≡ y → y ≡ x
p −¹ = λ i → p (∼ i)

One of the key operations with type theoretic equality
is transport: given an equality/path between types, we get
a function between these types. In Cubical Agda, this is
defined using another primitive called transp. However, for
the examples in this paper, the transport function suffices:

transport : A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a

The substitution principle is an instance of transport:

subst : (B : A → Type) {x y : A} → x ≡ y → B x → B y
subst B p b = transport (λ i → B (p i)) b

This function invokes transport with a proof that the family
B respects the equality p :

λ i→ B (p i) : B x ≡ B y

By combining transport and ∧ we can define the in-
duction principle for paths. However, an important difference
between path types in Cubical Agda and HoTT/UF is that
≡ does not behave like an inductive type. In particular, the

cubical path induction principle does not definitionally satisfy
the computation rule when applied to refl. Nevertheless, we
can still prove that this rule holds up to a path. This is a

subtle but important difference between cubical type theory
and HoTT/UF. Readers familiar with HoTT/UF might be
worried that the failure of this equality holding definitionally
complicates many proofs. However, in our experience, this is
rarely the case as many proofs that require path induction in
HoTT/UF can be proved more directly using cubical primi-
tives.
Cubical Agda also has a primitive operation for composing

paths and, more generally, for composing higher dimensional
cubes. This operation is called homogeneous composition
and is written hcomp. An important special case is binary
composition of paths · : x ≡ y → y ≡ z → x ≡ z.
The dependent version for PathP (over · ) is written ·’ .
By composing paths and higher cubes using hcomp, we can
reason about equalities/paths in a very direct way, avoiding
the use of path induction.

B. Important concepts from HoTT/UF in Cubical Agda

Pointed types and functions will play an important role in
this paper. Formally, a pointed type is a pair (A , ∗A) where
A is a type with ∗A : A. We write Type∗ for the universe of
pointed types (of implicit level `). Given two pointed types A
and B, a pointed function is a pair (f , p) : A →∗ B, where
f : A→ B and p : f(∗A) ≡ ∗B . Abusing notations, we often
leave ∗A and p implicit and write A : Type∗ and f : A→∗ B.

Most HITs in [1] can be defined directly using the general
schema of Cubical Agda. For example, the circle can be
defined as a type with a base point and a non-trivial loop
connecting base with itself:

data S¹ : Type where
base : S¹
loop : base ≡ base

Functions out of HITs are written using pattern-matching
equations, just like in regular Agda. When typechecking the
cases for path constructors, Cubical Agda checks that the
endpoints of what the user writes match up.

The suspension of a type A is defined as follows:

data Susp (A : Type) : Type where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south

We could directly define specific higher spheres as HITs with
a base point and a constructor for iterated paths. However, the
following definition is often easier to work with as one can
reason inductively about it:

Definition 1 (Sn). The n-spheres are defined by recursion:

Sn =


Bool if n = 0

S1 if n = 1

Susp Sn−1 if n > 1

These types are pointed by true, base and north.



Consistent with the intuition that types correspond to topo-
logical spaces (up to homotopy equivalence), we may consider
loop spaces of pointed types.

Definition 2 (Loop spaces). Given a pointed type A : Type∗,
we define its loop space as the pointed type

ΩA = (∗A ≡ ∗A , refl)

For n > 0 we define

Ωn+1A = Ω (ΩnA)

As an example of a non-trivial result which is proved using
path induction in HoTT/UF, but which can be proved very
concisely in Cubical Agda, consider the Eckmann-Hilton
argument. It says that path composition in higher loop spaces
is commutative and can be proved using a single transport
with the unit laws for · and some interval operations.

EH : {n : N} (p q : Ωˆ (2 + n) A) → p · q ≡ q · p
EH p q =

transport
(λ i → (λ j → rUnit (p j) i) · (λ j → lUnit (q j) i)
≡ (λ j → lUnit (q j) i) · (λ j → rUnit (p j) i))

(λ i → (λ j → p (j ∧ ∼ i) · q (j ∧ i)) ·
(λ j → p (∼ i ∨ j) · q (i ∨ j)))

A type A is not uniquely determined by its points—also
(higher) paths over A have to be taken into account. However,
for some types these paths become trivial at some point. We
define what this means formally as follows.

Definition 3 (n-types). Given n ≥ −2, a type A is a:
• (−2)-type if A is contractible (i.e. A is pointed by a

unique point).
• (n+ 1)-type if for all x, y : A, x ≡ y is an n-type.

We write n-Type for the universe of n-types (at some level `).

Equivalently, we could have said that, for n > −2, A is an
n-type if Ωn+1A is contractible for any choice of base point
a : A. We refer to (−1)-types as propositions and 0-types as
sets. A type is a proposition iff all of its elements are path-
equal.

Sometimes we are only interested in the structure of a type
A and its paths up to a certain level n. That is, we want to
turn A into an n-type while preserving the structure of A for
levels less than or equal to n. This can be achieved using the
n-truncation HITs ‖A ‖n. Just like for Sn, these are easily
defined in Cubical Agda for fixed n, but for general n ≥ −1
we rely on the “hub and spoke” construction [1, Section 7.3].2

This construction introduces an injection | | : A → ‖A ‖n
and path constructors hub and spoke ensuring that any map
Sn+1 → ‖A ‖n is constant (thus contracting Ωn+1 ‖A ‖n).
Using pattern-matching we can define the usual elimination
principle which says: given B : ‖A ‖n → n-Type, in order
to construct an element of type B x we may assume that x

2For n = −2 this construction fails. In this case, simply let ‖A ‖−2 = 1
where 1 is the unit type.

is of the form | a | for some a : A. This extends to paths
p : |x | ≡ | y | in ‖A ‖n+1. Suppose we have B : |x | ≡ | y | →
n-Type and want to construct B p. The elimination principle
tells us that it suffices to do so under the assumption that we
have a path q : x ≡ y in A with p = cong | | q. This is
motivated by [1, Theorem 7.3.12].

Truncations allow us to talk about how connected a type is.

Definition 4 (Connectedness). A type A is n-connected if
‖A ‖n is contractible.

Connectedness expresses in particular that |x | ≡ | y | holds
in ‖A ‖n for all x, y : A of an n-connected type A. This
enables applications of the induction principle for truncated
path spaces discussed above. Most types in this paper are 0-
connected. For such types, we can assume that x≡ y holds for
x, y : A whenever we are proving a family of propositions.

Another important class of HITs are pushouts. These cor-
respond to homotopy pushouts in algebraic topology and let
us define many useful spaces. Given functions f : A → B,
g : A→ C, the pushout of the span B

f← A
g→ C is the HIT:

data Pushout (f : A → B) (g : A → C) : Type where
inl : B → Pushout f g
inr : C → Pushout f g
push : (a : A) → inl (f a) ≡ inr (g a)

Many types that we have seen so far can be defined as
pushouts. For instance, SuspA is equivalent to the pushout
of the span 1← A→ 1. Another example is wedge sums:

Definition 5 (Wedge sums). Given pointed types A and B,
the wedge sum A∨B is the pushout of the span

A
λ x→ ∗A←−−−−−− 1

λ x→ ∗B−−−−−−→ B

This is pointed by inl ∗A.

C. Univalence

One of the most important notions in HoTT/UF is Voevod-
sky’s univalence axiom [3]. Informally this postulates that for
all types A and B, there is a term

univalence : (A ' B) ' (A ≡ B)

Here, A ' B is the type of functions e : A → B equipped
with a proof that the fiber/preimage of e is contractible at every
x : B [1, Chapter 4.4]. This axiom is a provable theorem in
Cubical Agda using the Glue types of [16, Section 6]. This
implies that there is an underlying function

ua : A ' B → A ≡ B

which allows equivalences to be converted to paths without
losing computational content. Transporting along a path con-
structed using ua applies the function e of the equivalence.

Equivalences A ' B are often constructed by exhibiting
functions f : A → B and g : B → A together with proofs
that they cancel. Such a quadruple is referred to as a quasi-
equivalence in [1]. It is a corollary of [1, Theorem 4.4.5] that



all quasi-equivalences can be promoted to equivalences. This
very useful fact is used throughout the formalization and paper.

An important consequence of univalence is that it also
applies to structured types. A structure on types is simply
a function S : Type → Type. By taking the dependent
sum of this, one obtains types with S-structures as pairs
(A , s) : ΣA:Type (S A). One example is the type of groups.
This is defined as the pair (G , isGroup G) where isGroup G
is a structure which consists of proofs that G is a set, is pointed
by some 0G : G, admits a binary operation +G, and satisfies
the usual group laws. In [26], a notion of univalent structure
and structure preserving isomorphisms ∼= for which it is direct
to prove that ua induces a function sip : A ∼= B → A ≡ B is
introduced in Cubical Agda. This is one way to formalize the
informal Structure Identity Principle (SIP) from HoTT/UF [1,
Section 9.8]. One can show that isGroup is a univalent
structure and that equivalences e : G ' H sending +G to
+H preserve this structure. In other words: the SIP implies
that isomorphic groups are path-equal.

We will sometimes take the liberty of referring to types
as groups despite their not being sets. This means that the
type admits a group structure but may have non-trivial higher
homotopies.

III. Z COHOMOLOGY IN CUBICAL AGDA

In classical mathematics, the n:th cohomology group with
coefficients in an abelian group G of a CW-complex X may be
characterized as the group of homotopy classes of functions
X → K(G,n). Here, K(G,n) denotes the n:th Eilenberg-
MacLane space over G. That is, K(G,n) is the unique
space with a single non-trivial homotopy group isomorphic
to G, i.e. πn(K(G,n)) ∼= G. While this is a theorem in
classical mathematics, we take it as our definition of the n:th
cohomology group of a type A:

Hn(A;G) = ‖A→ K(G,n) ‖0
This type inherits the group structure from K(G,n) and the
goal of this section is to define this explicitly. The group
structure which we will define here differs from previous
variations in that it is optimized for efficient computations.

A. Eilenberg-MacLane spaces

The family of spaces K(G,n) was constructed as a HIT and
proved to be an n-truncated and (n−1)-connected pointed type
by Licata and Finster [10]. In this paper, we focus on the case
G = Z and define this special case following Brunerie [25,
Def. 5.1.1]:

Definition 6. The n:th Eilenberg-MacLane space of Z, written
Kn, is a pointed type defined by:

Kn =

{
(Z , 0) if n = 0

(‖Sn ‖n , | ∗Sn |) if n ≥ 1

We write Hn(A) for Hn(A; Z) with Kn for K(Z, n). The
type Kn is clearly n-truncated and the fact that it is (n− 1)-
connected follows from the following proposition.

Proposition 1. Sn is (n− 1)-connected for n : N.

Proof. When n = 0, the statement is trivial as S0 is pointed.
When n ≥ 1, we want to show that ‖Sn ‖n−1 is con-
tractible. By the definition of (n − 1)-truncation the map
| − | : Sn → ‖Sn ‖n−1 is constant. Hence, ‖Sn ‖n−1 has a
trivial constructor and thus must be contractible.

Note that, in particular, Kn is 0-connected for n > 0; it is
an easy lemma that any m-connected type is also k-connected
for k < m. Alternatively, one may prove 0-connectedness of
Kn directly by truncation elimination and sphere elimination.

The proof of Proposition 1 is much more direct than the
one in [25, Prop. 2.4.2] which relies on general results about
connectedness of pushouts. The reason we prefer this more
direct but less general proof is that it computes much faster.
The reason for this speedup seems to be that the general
theory about connectedness relies on rather complex proofs
involving univalence. In particular, it relies on repeated use
of [1, Theorem 7.3.12] which says that the type of paths
|x | ≡ | y | over ‖A ‖n+1 is equivalent to ‖x ≡ y ‖n.

A more substantial deviation from [25] is in the definition of
the group structure on Kn. This is defined in [25, Prop. 5.1.4]
using Kn ' Ω Kn+1 which itself is proved using the Hopf
fibration [1, Section 8.5] when n = 1 and the Freudenthal
suspension theorem [1, Section 8.6] when n ≥ 2. This gives
rather indirect definitions of addition and negation on Kn by
going through Ω Kn+1. It turns out that these indirect defini-
tions lead to slow computations [27] due to the application
of the Freudenthal suspension theorem. To circumvent this,
we give a direct definition of the group structure on Kn
which in turn gives a direct proof that Kn ' Ω Kn+1 inspired
by the proof that Ω S1 ' Z of Licata and Shulman [28].
The strategy of first defining the group structure on Kn to
then prove that Ω Kn+1 ' Kn is similar to the one for
proving the corresponding statements for general K(G,n)
in [10]. However, we deviate in that we avoid the Freudenthal
suspension theorem and theory about connectedness.

The neutral element of Kn is ∗Kn
and we denote it by 0k.

In order to prove that Kn is a group we first define addition
+k : Kn → Kn → Kn. The following lemma is the key for
doing this. It is a special case of [1, Lemma 8.6.2], but the
proof does not rely on general theory about connected types.

Lemma 1. Let n,m ≥ 1 and suppose we have a fibration
P : Sn × Sm → (n+m− 2)-Type together with functions

f l : (x : Sn)→ P (x , ∗Sm) f r : (y : Sm)→ P (∗Sn , y)

and a path p : f l ∗Sn ≡ f r ∗Sm . There is a function
f : (z : Sn × Sm)→ P z together with paths

left : (x : Sn)→ f l x ≡ f (x , ∗Sm)

right : (y : Sm)→ f r y ≡ f (∗Sn , y)

such that p ≡ left ∗Sn · (right ∗Sm)-1. Furthermore, either
left or right holds definitionally.



Proof (sketch). The proof proceeds by induction: first on n
and then on m for the case n = 1. For n = m = 1, we define
the map

f : (z : S1 × S1)→ P z

f (x , base) = f l x

f (base , loop i) = (p ·’ cong fr loop ·’ p-1) i

f (loop i , loop j) = Q i j

where Q is given by the fact that P is a set. The left
path is just refl and the right path is easy to construct by
sphere induction. In particular, we let right ∗S1 = p-1. Thus
p ≡ left ∗S1 · (right ∗S1)-1 is immediate by construction.

For the inductive step, we focus on Sn+1 × Sm and omit
the proof for S1 × Sm+1 since it is close to identical. We
begin by defining f for north and south.

f (north , y) = f r y
f (south , y) = transport (λ i→ P (merid ∗Sm i , y)) (f r y)

Note that already here, we have the right path; it holds by
refl. The left path is constructed in parallel with f. Thus far,
we can only define it for north and south. This is easily done
so that p ≡ left ∗Sn+1 · (right ∗Sm)-1 is satisfied.

We now need to define f (merid x i , y). That is, we need to
provide a dependent path from f r y to

transport (λ i→ P (merid ∗Sm i , y)) (f r y)

over P (merid x i , y) for (x , y) : Sn × Sm. The type
of such paths is an (n + m − 2)-type and we may apply
the induction hypothesis. This means that we only need to
construct it for (∗Sn , y) and (x , ∗Sm) and prove that these
two constructions agree on (∗Sn , ∗Sm). Furthermore, since it
remains to construct left (merid x i), this construction has to
respect the definition of left north and left south. This follows
in a straightforward manner from the left and right paths given
by the induction hypothesis. We omit the construction—it is
not difficult, but rather technical.

The general version of Lemma 1 is used for Eilenberg-
MacLane spaces over an arbitrary group G in [10]. The
advantage of the above form is the definitional reductions
that we get from the fact that the lemma is proved by
sphere induction. Consequently, we may define +k so that e.g.
0k +k 0k ≡ 0k holds definitionally. This allows us to make
statements and carry out proofs which would otherwise not be
well-typed. We define +k : Kn → Kn → Kn as follows.
• When n = 0, +k is simply integer addition.
• When n = 1, we define +k by cases:

|x |+k | base | = |x |
| base |+k | loop j | = | loop j |
| loop i |+k | loop j | = Q i j

where Q is a suitable filler of a square with loop on all
sides. This is easily defined by a single hcomp so that

cong2 +k loop′ loop′ ≡ loop′ · loop′ holds definitionally
for the canonical loop loop′ = cong | | loop in K1.

• When n ≥ 2 we need to construct a map Sn × Sn → Kn.
Because Kn is n-truncated it is also an (n+n−2)-Type.
By Lemma 1, we are done if we can provide two maps
Sn → Kn and prove that they agree on ∗Sn . In both cases
we choose the inclusion map λx → |x |. We then just
need to prove that | ∗Sn | ≡ | ∗Sn |, which we do by refl.

We define negation -k : Kn → Kn as follows:

• When n = 0, -k is simply integer negation.
• When n ≥ 1, we define -k x for x : Kn by applying the

inverse of λ y → x+k y to 0k. This requires us to prove
this map is an equivalence. Since this is a proposition,
it suffices to prove it when x is 0k. After applying
truncation elimination to x, this map is just the identity
and we are done.

The fact that +k and -k satisfy the group laws follows from
Lemma 1. In fact, all group laws either hold by refl or have
proofs that are at least path-equal to refl at 0k. This in turn
simplifies many later proofs and improves the efficiency of
computations. We write lUnitk/rUnitk for the left/right unit
laws and lCancelk/rCancelk for the left/right inverse laws.

The definition of +k for n ≥ 2 may seem somewhat
naive. However, it provably agrees with the definition given
by Brunerie in [25, Prop. 5.1.4]. In fact, a simple corollary of
Lemma 1 is that there is at most one binary operation on Kn
with lUnitk and rUnitk such that lUnitk 0k ≡ rUnitk 0k (that
is, there is at most one h-structure [10, Def. 4.1] on Kn). The
fact that this is satisfied by +k holds by refl. The same result
was proved for the addition of [25, Prop. 5.1.4] in [27].

The group structure on Kn allows us to extend the
usual encode-decode proof that Z ' Ω S1 (or, equivalently,
K0 ' Ω K1) to Kn with n ≥ 1. We should note that a similar
proof was used in [10] in order to prove that G ' π1(K(G, 1)).

Theorem 1. Kn ' Ω Kn+1

Proof. As observed above, the case n = 0 is just Z ' Ω S1,
so we focus on the case when n ≥ 1. We first define

σn : Kn → Ω Kn+1

σn |x | = cong | | (merid x · (merid ∗Sn)-1)

This is just the usual map from the Freudenthal equivalence
defined in [1, Section 8.6]. It follows easily from Lemma 1 that
σn is a morphism in the sense that σn (x+k y) ≡ σn x · σn y.
We proceed by the encode-decode method and define a fi-
bration Code : Kn+1 → n-Type. Since n-Type is (n + 1)-
truncated [1, Theorem 7.1.11], we may define it by truncation
elimination.

Code | north | = Kn
Code | south | = Kn

Code |merid x i | = ua (λ y → |x |+k y) i



The last case uses the fact that for any x : Kn, the map
λ y → x+k y is an equivalence. As usual, we define

encode : (x : Kn+1)→ 0k ≡ x→ Code x
encode x p = subst Code p 0k

The inverse is defined by

decode : (x : Kn+1)→ Code x→ 0k ≡ x
decode | north | = σn

decode | south | = λ |x | → cong | | (merid x)

decode |merid y i | = . . .

For the missing case we need to prove that the function

transport (λ i→ Code |merid y i | → 0k ≡ |merid y i |) σn

takes |x | to cong | | (merid x). By the transport laws for
functions and ua we can deduce that this function applied to
|x | yields the following (up to a path):

σn (-k | y | +k |x |) · cong | | (merid y)

As σn is a morphism and +k is commutative we obtain:

σn |x | · (σn | y |)-1 · cong | | (merid y)

Unfolding σn |x | and σn | y | then yields a composition of
paths which simplifies to cong | | (merid x) as desired.

Proving that encode | north | and decode | north | are mu-
tually inverse is very direct. By generalizing to any x : Kn+1,
decode x (encode x p) ≡ p follows by path induction.
By the transport law for ua, the other direction amounts to
showing (| y | +k 0k) -k 0k ≡ | y |, which clearly holds.

In addition to Theorem 1, the direct definition of +k gives
a short proof that Ω Kn is commutative.

Lemma 2. For n > 0 and p, q : Ω Kn, we have

p · q ≡ cong2 +k p q

Proof. First, we remark that the statement is well-typed, due to
the definitional equality 0k +k 0k ≡ 0k. Recall, p, q : 0k ≡ 0k
and e.g. cong2 +k p q is of type 0k +k 0k ≡ 0k +k 0k. Using
this definitional equality, we may apply the rUnitk and lUnitk
laws pointwise to p and q which gives us:

p ≡ cong (λx → x +k 0k) p

q ≡ cong (λ y → 0k +k y) q

By functoriality of cong2 we get

p · q ≡ cong (λx→ x +k 0k) p · cong (λ y → 0k +k y) q

≡ cong2 +k p q

Lemma 3. For n > 0 and p, q : Ω Kn, we have

cong2 +k p q ≡ cong2 +k q p

Proof. By a very similar argument as in Lemma 2, but using
using commutativity of +k.

Theorem 2. Ω Kn is commutative with respect to path com-
position.

Proof. As Z is a set, the statement is trivial for n = 0. When
n ≥ 1 the result directly follows from Lemmas 2 and 3.

An alternative proof of Theorem 2 can be found in [25,
Prop. 5.1.4]. In that proof, one first translates Ω Kn into
Ω2 Kn−1, applies the Eckmann-Hilton argument and then
translates back. This translation back-and-forth is problematic
from a computational point of view, and the proof of Theo-
rem 2 is more computationally efficient.

B. Group structure on Hn(A)

We now return to Hn(A) and define the group operations:

0h = |λx → 0k |
| f | +h | g | = |λx → f x +k g x |

-h | f | = |λx → -k f x |

The fact that (Hn(A),0h,+h, -h) forms an abelian group
follows immediately from the group laws for Kn and funExt.

Analogously to the above cohomology groups, we can also
define a reduced version which we denote by H̃n(A). This
is often preferred in classical algebraic topology as it avoids
some exceptional cases which simplify statements [9]. Given
a pointed type A let

H̃n(A) = ‖A→∗ Kn ‖0

It is easy to prove that the following map is an equivalence
for n ≥ 1.

ϕ : Hn(A)→ H̃n(A)

ϕ | f | = |λx → (f x -k f ∗A , rCancelk (f ∗A)) |

Using this equivalence, the group structure on H̃n(A) can be
induced from the group structure on Hn(A) using the SIP.
One may also define it directly. This is more subtle as the
group laws also have to respect the pointedness proofs, but it
turns out to be straightforward with our definition of the group
structure on Kn. In the formalization this is how the group
structure on H̃n(A) is defined. Interestingly, in a previous
attempt to give a direct definition of this group structure using
the definition of +k from [25, Prop. 5.1.4] it was difficult to get
Cubical Agda to typecheck in reasonable time without using
the abstract keyword (which erases computational content).

IV. THE EILENBERG-STEENROD AXIOMS

A common approach in classical mathematics is to work
abstractly with cohomology using the Eilenberg-Steenrod ax-
ioms [29]. The goal of this section is to verify that our
definition of cohomology satisfies a variation of these axioms,
which ensures that it is a well-behaved cohomology theory.



A. The axioms in HoTT/UF
The Eilenberg-Steenrod axioms have been studied previ-

ously in HoTT/UF by [12], [13] and [8]. In order to state the
Exactness axiom, we need to introduce (homotopy) cofibers
(also known as mapping cones).

Definition 7 (Cofiber). Given f : A → B, we define the
cofiber of f , denoted coFib f , as the pushout of the span

1
λ x→ ∗1←−−−−−− A f−→ B

We write cfcod for the right inclusion inr : B → coFib f .

With this, we can state the axioms.

Definition 8 (Eilenberg-Steenrod axioms). A family of con-
travariant functors En : Type∗ → AbGrp indexed by n : Z
is an ordinary (reduced) cohomology theory if the following
axioms are satisfied.

Suspension: For A : Type∗, there is a group isomorphism
EnA ∼= En+1 (Susp A). Furthermore, this isomorphism is
natural with respect to Susp.

Exactness: For f : A→∗ B, the below sequence is exact.

En (coFib f)
cfcod∗−−−−→ EnB

f∗

−→ EnA

Here f∗ and cfcod∗ are short for En f and En cfcod.
Dimension: For n : Z with n 6= 0, En S0 is trivial.

Here “ordinary” refers to the fact that En satisfies the Dimen-
sion axiom. The sequence in the Exactness axiom is exact if
the kernel of f∗ (the elements of En B that gets mapped to 0
in En A) is equal to the image of cfcod∗. As En A is a set,
the property of “b being in the kernel of f∗” is a proposition.
Univalence then implies that Exactness follows if all b : En B
are in the kernel of f∗ iff they are in the image of cfcod∗.

One often also consider a further axiom:
Additivity: For I : Type and family of types Ai indexed

by I the following groups are isomorphic:

En
(∨

i:I
Ai

)
∼= ((i : I)→ En Ai)

Proving this typically requires that the index set I satisfies
the set theoretic axiom of choice [13]. As we are interested in
computations, we do not rely on this general form. Instead, the
following version is sufficient for all examples we consider:

Binary Additivity: For n : Z and A,B : Type∗ the
following groups are isomorphic:

En (A∨B) ∼= (EnA × EnB)

B. Verifying the axioms
It is possible to directly show that H̃n satisfies the axioms.

However, it turns out that when working formally, unreduced
cohomology Hn is often easier to work with as it avoids
pointed types. The only caveat is that Exactness fails for
H0. We therefore show that the axioms hold for the following
equivalent cohomology theory:

Ĥn(A) =


1 if n < 0

H̃0(A) if n = 0

Hn(A) if n > 0

As Ĥn(A) is isomorphic to H̃n(A) for n ≥ 0, the SIP
implies that it suffices to show that the axioms hold for Ĥn(A)
in order to show that H̃n(A) also satisfies them.

Proposition 2. Ĥn is an ordinary reduced cohomology theory.

Proof (sketch). We verify the axioms, omitting trivial cases
and leaving technical details to the formalization.

Suspension: The proof is almost identical for n = 0 and
n > 0, so we focus on the latter. Given f : SuspA→ Kn+1

we get f ′ : A→ Ω Kn+1 sending a : A to

p-1 · cong (λx → f x -k f 0k) (merid a · (merid ∗A)-1) · p

where p = rCancelk (f 0k). By pointwise application of The-
orem 1, this gives us a map ϕ : Hn+1(Susp A) → Hn(A),
sending | f | to |λx → σ-1

n (f ′ x) |. The inverse is defined
analogously. The fact that this is an isomorphism is technical
but straightforward using that σn is an equivalence.

When n = −1, we need to prove that H̃0 (Susp A)
is contractible for pointed types A. This is immediate; any
function f : SuspA→ Z is uniquely determined by f north
because f south ≡ f north must hold by merid ∗A, and
cong f (merid x) ≡ cong f (merid y) holds for any x, y : A
since Z is a set.

Naturality of these isomorphisms follows immediately by
construction. It even holds definitionally modulo induction on
n, truncation elimination and pattern matching on Susp A.

Exactness: This proof is also almost identical for n = 0 and
n > 0, so we focus on the latter again. It suffices to check that
all | g | : Hn(B) are in the kernel of f∗ iff they are in the image
of cfcod∗. For the left to right direction, assume that we have
a path p′ : f∗ | g | ≡ 0h. We are proving a proposition, and
we may thus apply the induction principle for (set) truncated
paths to p′. This gives a path p : g ◦ f ≡ λx → 0k and we
define:

h : coFib f → Kn
h (inl ∗1) = 0k
h (cfcod x) = g x

h (push a i) = p (∼ i) a

This satisfies cfcod∗ |h | ≡ | g | definitionally and hence
| g | is in the image of cfcod∗. The other direction is proved
similarly.

Dimension: The only non-trivial case is n > 0. It suffices
to prove that for | f | : Hn(S0) we have | f | ≡ 0h. Since Kn
is 0-connected in this case and | f | ≡ 0h is a proposition, we
may assume that f true ≡ f false ≡ 0k and thereby we are
done by function extensionality.

The binary additivity axiom also holds.

Proposition 3. Ĥn satisfies Binary Additivity.

Proof. For n = 0, the intuition is that H̃0(A∨B) consists of
pairs of functions f : A → Z and g : B → Z with a path
p : f ∗A ≡ g ∗A and a proof of pointedness q : f ∗A ≡ 0.
The path q tells us that f is pointed, and by composition with



p we may also deduce that g is pointed. Hence, we get a
homomorphism φ : H̃0(A∨B) → H̃0(A) × H̃0(B). That
φ is an isomorphism follows easily as Z is a set and thus φ
preserves p and q trivially.

When n ≥ 1 we can define a homomorphism by:

φ : Hn(A∨B)→ Hn(A) × Hn(B)

φ | f | = (| f ◦ inl | , | f ◦ inr |)

This map simply forgets that f (inl ∗A) ≡ f (inr ∗B) holds.
The topological intuition here is that this path always can
be contracted by continuously varying the choice of points
f(inl ∗A) and f(inr ∗B). We define the inverse by

ψ : Hn(A) × Hn(B)→ Hn(A∨B)

ψ (| f | , | g |) = | f ∨ g |

where f ∨ g : A∨B → Kn is defined by

(f ∨ g) (inlx) = f x +k g ∗B
(f ∨ g) (inr x) = f ∗A +k g x

(f ∨ g) (push ∗1 i) = f ∗A +k g ∗A

The fact that φ (ψ x) ≡ x holds is easy—since the statement
is a proposition, we may assume for any pair of functions
f : A→ Kn and g : B → Kn that f ∗A ≡ g ∗B ≡ 0k, using
the fact that Kn is 0-connected.

For the other direction, again due to 0-connectedness, we
may assume that we have a path ` : 0k ≡ f (inl ∗A). Under
this assumption, we prove that f c ≡ ((f ◦ inl)∨ (f ◦ inr)) c
by induction on c : A∨B. For c = inl a, we need to prove
that f (inl a) ≡ f (inl a) +k f (inr ∗B). We use the following
construction

P : (x : Kn) {y z : Kn} → 0k ≡ y → y ≡ z → x ≡ x +k z

P x p q = (rUnitk x)-1 · (λ i→ x +k p i) · (λ i→ a +k q i)

and are done by P (f (inl a)) ` (cong f (push ∗1)).
For c = inr b, the goal is f (inr b) ≡ f (inl ∗A) +k f (inr b).

We define

Q : (x : Kn) {y : Kn} → 0k ≡ y → x ≡ y +k x

Q x p = (lUnitk x)-1 · (λ i→ p i +k x)

and are done by Q (f (inr b)) `.
For c = push ∗1 i, we need to construct a filler of type

PathP (λ i→ P’ i ≡ Q’ i) (cong f (push ∗1)) refl (1)

where P’ = P (f (inl ∗A)) ` (cong f (push ∗1)) and
Q’ = Q (f (inr ∗B)) `. In order to do this, we generalize and
ask that for arbitrary x, y : Kn and paths p : 0k ≡ x and
q : x ≡ y, there is a filler of the square

�p,q : PathP (λ i→ P x p q i ≡ Q y p i) q refl

By path induction on p and q, we are done if we can show
that P 0k refl refl ≡ Q 0k refl ≡ refl; in this case we only
need to fill a square with refl on all sides, which is done by
refl {x = refl}. Since p ≡ q ≡ refl, the only non-trivial

components of P 0k refl refl and Q 0k refl are (rUnitk 0k)-1

and (lUnitk 0k)-1 respectively. As remarked in Section III,
these are both (definitionally) equal to refl, and we are done
as �`,cong f (push ∗1) is the filler we needed for (1).

The axioms are hence satisfied by Hn for n > 0, H̃n for
n ≥ 0, and Ĥn for all n : Z. This means that they are all
well-behaved cohomology theories and we can now do some
concrete characterizations using the axioms.

C. Characterizing Z cohomology groups using the axioms

The Eilenberg-Steenrod axioms are enough for many fun-
damental constructions in cohomology theory. One important
example is the Mayer-Vietoris sequence.

Theorem 3 (Mayer-Vietoris sequence). Let En be a cohomol-
ogy theory and D be the pushout of the span A

f← C
g→ B.

There is an exact sequence

· · · → En−1 C → EnD → EnA×EnB → En C → . . .

There are many variants of Theorem 3. Cavallo constructed
the sequence for general reduced cohomology directly from
the Eilenberg-Steenrod axioms in [12], whereas Brunerie
constructed a version with alternating reduced and unreduced
groups for a cohomology theory similar to ours in [25,
Prop. 5.2.2].

Many elementary results about cohomology groups can be
deduced from this sequence. For instance, by viewing Sn+1

as the pushout of the span 1 ← Sn → 1 and noting that
H̃n(1) ∼= 1, we get exact sequences

1 −→ H̃n(Sn)
dn+1−−−→ H̃n+1(Sn+1)→ 1

where dn+1 is the map from En C to En+1D in Theorem 3.
It is easy to prove that H̃0(S0) ∼= Z and get a stable sequence

Z ∼= H̃1(S1) ∼= H1(S1) ∼= H̃2(S2) ∼= H2(S2) ∼= . . .

With computations in Cubical Agda in mind, we prefer not
to use proofs such as this one. The problem with proofs from
exact sequences is that many constructions become quite indi-
rect. For instance, the inverse of dn is induced by the proofs
of the exactness properties of the Mayer-Vietoris sequence
instead of being constructed directly. We have formalized
an unreduced version of the sequence in the agda/cubical
library, but have so far been able to avoid it and instead
give direct characterizations of all cohomology groups that
we considered.

V. CHARACTERIZING COHOMOLOGY GROUPS DIRECTLY

In this section, we characterize the unreduced cohomology
groups Hn(A) for the spheres, torus, Klein bottle and real
projective plane. These will be used for computations in
Section VI and the goal is to characterize the groups directly
in order to have isomorphisms that compute as fast as possible.

It is an easy lemma that H0(A) ' Z if A is 0-connected,
which is the case for all types considered here. The cases when
Hn(A) is trivial for n > 0 are also easy to characterize for



all A that we consider using connectedness arguments. We
give one such characterization in Proposition 5 and the rest
are omitted for space reasons. The main focus in this section
will hence be on the non-trivial Hn(A) with n > 0, but we
emphasize that all cases, as well as homomorphism proofs,
have been formalized and the curious reader is encouraged to
consult the formalization.

A. Spheres

The key to characterizing the cohomology groups of spheres
is the Suspension axiom. Recall that Sn+1 = Susp Sn for
n ≥ 1 and thus we have that Hn+1(Sm+1)'Hn(Sm).
This covers the inductive step in the proof of the following
proposition.

Proposition 4. Hn(Sn) ' Z for n ≥ 1.

Proof. By Suspension and induction, it suffices to consider
the case when n = 1. We inspect the underlying function space
of H1(S1), i.e. S1 → K1. A map f : S1 → K1 is uniquely de-
termined by f base : K1 and cong f loop : f base ≡ f base.
Thus, we have

H1(S1) ' ‖
∑
x:K1

x ≡ x ‖0

By a base change we get that (x ≡ x) ' (0k ≡ 0k) for any
x : K1. Hence

H1(S1) ' ‖K1 × Ω K1 ‖0
' ‖K1 ‖0 × ‖Ω K1 ‖0
' ‖Ω K1 ‖0
' ‖Ω S1 ‖0
' Z

The trivial cohomology groups are easily handled in a
similar manner.

Proposition 5. Hn(Sm) ' 1 for n,m ≥ 1 with n 6= m.

Proof. By Suspension and induction on n and m, it suffices
to prove the statement for the cases (a) n = 1, m ≥ 2 and (b)
m = 1, n ≥ 2.

For case (a), we note that K1 ' ‖K1 ‖m−1 since K1 is
a 1-type and m ≥ 2. Let | f | : ‖Sm → ‖K1 ‖m−1 ‖0.
We prove that | f | ≡ 0h. This is a proposition, so by 0-
connectedness of K1, we may assume that f base ≡ |0k |.
But by the definition of (m − 1)-truncations, any map
f : Sm → ‖K1 ‖m−1 is constant. Hence | f | ≡ 0h and conse-
quently H1(Sm) ' ‖Sm → ‖K1 ‖m−1 ‖0 is contractible.

For case (b), we get in the same way as in the proof of
Proposition 4 that

‖S1 → Km ‖0 ' ‖Km × Ω Km ‖0 ' ‖Km ‖0 × ‖Km−1 ‖0
This type is hence clearly contractible since Kn is 0-connected
for all n > 0.

We note that part (a) of the proof above can be generalized
for any n,m ≥ 1 such that n < m. This gives a short and
computationally efficient proof of this special case.

B. The torus

The cohomology groups of the torus are also easy to
characterize directly. The torus HIT, T 2, is defined as follows:

data T2 : Type where
pt : T2

`1 `2 : pt ≡ pt
� : PathP (λ i → `2 i ≡ `2 i) `1 `1

The square constructor � corresponds to the usual gluing
diagram for constructing the torus in classical topology as it
identifies the line `1 with itself over an identification of `2 with
itself. As discussed in the introduction, it is easy to prove in
Cubical Agda that T 2 ' S1 × S1 (see [15, Section 2.4.1]).
This allows us to apply currying to T 2 → Kn, which is the
key step in the proofs of the following two propositions.

Proposition 6. H1
(
T 2
)
' Z × Z

Proof. We inspect the underlying function space T 2 → K1,
which is equivalent to S1 →

(
S1 → K1

)
. From the proof of

Proposition 4, we know that(
S1 → K1

)
' K1 × Ω K1 ' K1 × Z

Hence, we have that

H1
(
T 2
)
' ‖S1 → K1 × Z ‖0
' ‖

(
S1 → K1

)
×
(
S1 → Z

)
‖0

' ‖S1 → K1 ‖0 × ‖S1 → Z ‖0
def≡ H1

(
S1
)
× H0

(
S1
)

' Z × Z

Proposition 7. H2
(
T 2
)
' Z

Proof. Again, we consider the underlying function space, post
currying, S1 → (S1 → K2). Like above, this is just(

S1 → K2 × Ω K2

)
'
(
S1 → K2 × K1

)
'
(
S1 → K2

)
×
(
S1 → K1

)
and hence we have

H2
(
T 2
)
' ‖

(
S1 → K2

)
×
(
S1 → K1

)
‖0

' ‖S1 → K2 ‖0 × ‖S1 → K1 ‖0
def≡ H2

(
S1
)
× H1

(
S1
)

' Z

C. The Klein Bottle and the Real Projective Plane

The Klein bottle, K 2, is also defined as a HIT, but with a
twist in � just like in the classical gluing diagram:

data K2 : Type where
pt : K2

`1 `2 : pt ≡ pt
� : PathP (λ i → `2 (∼ i) ≡ `2 i) `1 `1

Note that � equivalently may be interpreted as the more
convenient path `2 · `1 · `2 ≡ `1.



To characterize the cohomology groups of K 2, we need to
understand their underlying function spaces. It is easy to see
that (

K 2 → Kn
)
'
∑
x:Kn

∑
p,q:x ≡ x

(p · q · p ≡ q)

Noting that, by Theorem 2, path composition in Kn is com-
mutative, we get

(p · q · p ≡ q) ' (p · p · q ≡ q) ' (p · p ≡ refl)

Hence, we get

(
K 2 → Kn

)
'
∑
x:Kn

(
(x ≡ x) ×

∑
p:x ≡ x

(p · p ≡ refl)

)
(2)

This the key to characterizing the cohomology groups of K 2.

Proposition 8. H1
(
K 2
)
' Z

Proof. Note that for x : K1, we have that∑
p:x ≡ x

(p · p ≡ refl) '
∑
a:Z

(a + a ≡ 0)

and hence this type is clearly contractible. This allows us to
simplify (2) and get

H1(K 2) ' ‖K 2 → K1 ‖0 ' ‖
∑
x:K1

(x ≡ x) ‖0 ' H
1
(
S1
)
' Z

Proposition 9. H2
(
K 2
) ∼= Z/2Z

Proof. Using 0-connectedness of K2 and (x ≡ x) for x : K2,
it is easy to see that, by truncating both sides of (2), we get

H2
(
K 2
)
' ‖

∑
p:Ω K2

(p · p ≡ refl) ‖0

Using the equivalence Ω K2 ' K1 and the fact that it takes
path composition to addition, this can be further simplified to:

‖
∑
x:K1

(x +k x ≡ 0k) ‖0

With some abuse of notation, let us simply write loop for the
canonical loop in K1, i.e. cong | | loop. We are done if we
can prove that, for any element of ‖

∑
x:K1

(x +k x ≡ 0k) ‖0,
it is either is path-equal to | (0k , refl) | or to | (0k , loop) |.
Note that this is well-typed as 0k +k 0k is definitionally 0k.

We begin by characterizing terms on the form | (0k , p) | by
noting that p ≡ loopk for some k : Z, due to the equivalence
Ω K1 ' Z. The claim is that | (0k , loopk) | ≡ | (0k , refl) | if
k is even and | (0k , loopk) | ≡ | (0k , loop) | if k is odd. We
do this by inducting on k (assuming k ≥ 0 as the case k < 0
is completely symmetric). When k is 0 or 1, the statement is
trivial, since loop0 ≡ refl by definition. The crucial case is
when k = 2 in which we need to show that

| (0k , loop · loop) | ≡ | (0k , refl) |

Naturally, their first components agree. However, we do not
prove this by refl. Instead we prove that 0k ≡ 0k by loop. By

the characterization of paths over dependent sums, we now
need to fill the square:

cong2 +k loop loop

refl

refl

loop · loop

However, this is trivial since cong2 +k loop loop definitionally
reduces to loop · loop.

It is not a priori obvious how to define the induc-
tive step. The goal is to define an operation � on
‖
∑
x:K1

(x +k x ≡ 0k) ‖0 such that for p, q : Ω K1 we have

| (0k , p) | � | (0k , q) | ≡ | (0k , p · q) | (3)

Suppose we have two terms | (| a | , p) | and | (| b | , q) | of
type ‖

∑
x:K1

(x +k x ≡ 0k) ‖0. Since this type is a set, we
may apply Lemma 1 in order to define �. We define

| (| a | , p) | �l | (0k , q) | = | (| a | , p · q) |
| (0k , p) | �r | (| b | , q) | = | (| b | , q · p) |

To complete the definition of �, Lemma 1 requires us to prove
that | (0k , p · q) | ≡ | (0k , q · p) |. This follows immediately
by commutativity of Ω K1, and thereby � is defined. The fact
that it satisfies (3) follows from the left path in Lemma 1.

The inductive step is now easy to complete. We have

| (0k , loopk+2) | ≡ | (0k , loopk) | � | (0k , loop2) |
≡ | (0k , loopk) | � | (0k , refl) |
≡ | (0k , loopk) |

Hence, we have shown that there are precisely two elements
(up to path-equality) in ‖

∑
x:K1

(x +k x ≡ 0k) ‖0, and thus

H2
(
K 2
)
' ‖

∑
x:K1

(x +k x ≡ 0k) ‖0 ' Z/2Z

The attentive reader will have noticed that something rem-
iniscent of the real projective plane, RP 2, appears in both
proofs in this section. We define RP 2 as a HIT as follows.

data RP 2 : Type where
pt : RP 2

` : pt ≡ pt
� : ` ≡ ` −¹

We characterize Hn(RP 2) for n ≥ 1 by

‖RP 2 → Kn ‖0 ' ‖
∑
x:Kn

∑
p:x ≡ x

(p ≡ p−1) ‖0

' ‖
∑
x:Kn

∑
p:x ≡ x

(p · p ≡ refl) ‖0

' ‖
∑
p:Ω Kn

(p · p ≡ refl) ‖0

When instantiated with n = 1 and n = 2 this is precisely
one of the types appearing in the proofs of Proposition 8 and



Proposition 9 respectively. We have hence already proved that
H1
(
RP 2

)
' 1 and H2

(
RP 2

)
' Z/2Z.

VI. COMPUTING WITH THE COHOMOLOGY GROUPS

For every equivalence φ : Hn(A) ' G in Section V, two
benchmarks have been run in Cubical Agda. Test 1 concerns
the behavior of φ and φ-1. The aim was to check whether
φ (φ-1 g) ≡ g is proved by refl for different values of g : G.
Test 2 concerns the behavior of +h and the aim was to check
whether φ (φ-1 g1 +h φ-1 g2) ≡ g1 +G g2 for g1, g2 : G.

For an example of how the tests were performed, let φ :
H1(K 2) ' Z. We then measure how long it takes to typecheck
that Test 2 is proved by refl when instantiated with concrete
numbers. In the example below we use 1 and 2 and the test
took 15ms to terminate, which we record in a comment.

test : φ (φ−¹ 1 +h φ−¹ 2) ≡ 3 -- 15ms
test = refl

As we expect similar goals to appear in future formaliza-
tions, the tests were run on a regular laptop with 1.60GHz
Intel processor and 16GB RAM. The group elements in
the tests were made up from integers between -5 and 5.
Results of these tests are summarized in the table below.
The failed computations, marked with 7, were manually
terminated after 10min. Details and exact timings can be
found at https://github.com/agda/cubical/blob/master/Cubical/
Experiments/ZCohomology/Benchmarks.agda.

Type A Cohomology Group G Test 1 Test 2

S1 H1 Z 3 3

S2 H2 Z 3 71

T 2 H1 Z × Z 3 3

H2 Z 3 71

S2 ∨S1 ∨S1 H1 Z × Z 3 3

H2 Z 3 71

K 2 H1 Z 3 3

H2 Z/2Z 7 7

RP 2 H2 Z/2Z 7 7
1Some simple cases terminate (e.g. φ (φ-1 0 +h φ

-1 0) ≡ 0),
but take between 0.2s and 4s.

For most spaces considered here Test 1 terminates in less
than 0.2s. This is a considerable improvement to prior attempts
in [27] where the same calculations failed to terminate for
both H2(S2 ∨S1 ∨S1) and H2(T 2) (that formalization used
+h from [25] and the Mayer-Vietoris sequence). However,
Test 1 fails to terminate for H2

(
K 2
)

and H2
(
RP 2

)
. After

many optimizations, even φ 0h ≡ 0 can only be verified
computationally in Cubical Agda for RP 2 (the same test
fails for K 2). This is not as surprising as it may seem. For
both spaces, φ attempts to compute the winding number of
a loop in ΩK1 which is constructed in terms of the complex
proof that σ-1

2 : Ω K2 → K1 is a morphism. For K 2, this
construction also relies on the proof of Theorem 2. Higher
cohomology groups of spheres also appear to suffer from the
same problems. For φ : H3

(
S3
)
' Z, Test 1 fails even for

0. This is more surprising as it is a very simple example of

a non-trivial cohomology group with n > 2. We conjecture
that one of the major culprits is Cubical Agda’s handling of
truncations and are exploring ways to optimize it.

VII. CONCLUSIONS

We have developed many classical results in cohomology
theory synthetically using Cubical Agda. This has led to
new and more direct proofs than what already exists in
the HoTT/UF literature. Furthermore, the synthetic charac-
terizations of the cohomology groups for K 2 and RP 2 are
novel. The proofs have been constructed with computational
efficiency in mind, allowing us to make explicit computations
involving several non-trivial cohomology groups. These tests
can easily be modified and used to give benchmarks for
future improvements of Cubical Agda and related systems
like redtt [30].

A. Related and future work

In addition to the related work already mentioned in the
paper, there is some related prior work in Cubical Agda.
Qian [31] formalized K(G, 1) as a HIT, following [10], and
proved that it satisfies π1(K(G, 1)) ≡ G. Alfieri [32] and
Harington [33] formalized K(G, 1) as the classifying space
BG using G-torsors. Using this H1(S1; Z) ≡ Z was proved—
however, computing using the maps in this definition proved
to be infeasible. It is not clear where the bottlenecks are, but
we emphasize that with the definitions in this paper, there are
no problems computing with this cohomology group.

Certified computations of homology groups using proof
assistants have been considered before the invention of
HoTT/UF. For instance, the Coq system [34] has been used
to compute homology [35] and persistent homology [36] with
coefficients in a field. This was later extended to homology
with Z coefficients in [37]. The approach in these papers was
entirely algebraic and spaces were represented as simplicial
complexes. However, a synthetic approach to homology in
HoTT/UF was developed informally by Graham [38] using
stable homotopy groups. It would be interesting to see if this
could be made formal in Cubical Agda so that we can also
characterize and compute with homology groups.

Another natural continuation of this work would be to
consider the cohomology ring H∗(A) of a type A. The
invariants characterized in this paper cannot distinguish T 2

and S2 ∨S1 ∨S1, but this should be possible by means of a
single computation using the cup product ^ in their respective
cohomology rings. A more ambitious application would be to
reduce all of [25, Chapter 6] to a single computation using ^
for CP 2. The definition of H∗(A) in HoTT/UF was given by
Brunerie [25, Chapter 5.1]. However, properties of ^ relies
on the smash product HIT which has proved to be surprisingly
complex to reason about formally [39]. Luckily, Baumann [40]
has managed to define and reason about ^ in HoTT-Agda
using ideas of van Doorn [8]. It should be possible to port these
ideas to Cubical Agda and hopefully significantly simplify
the involved proofs.

https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda
https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda
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