A Cubical Approach to Synthetic Homotopy Theory

Guillaume Brunerie and Daniel R. Licata

Université de Nice and Wesleyan University

July 6, 2015
LICS 2015, Kyoto
Homotopy type theory is the study of spaces and continuous maps by way of their points, paths, paths between paths, and so on.

Homotopy type theory is an extension of Martin-Löf type theory by the *univalence axiom* and *higher inductive types* (HITs), which can be used to develop homotopy theory in type theory.

<table>
<thead>
<tr>
<th>Type</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term of a type</td>
<td>Point of a space</td>
</tr>
<tr>
<td>Identity type</td>
<td>Type of paths</td>
</tr>
<tr>
<td>Equality proof</td>
<td>Continuous path</td>
</tr>
<tr>
<td>Equality between equalities</td>
<td>Homotopy between paths</td>
</tr>
</tbody>
</table>
Univalence and HITs

- Martin-Löf’s identity type is written Path with constructor id.
- Univalence says that the canonical map
 $$\text{Path } A \rightarrow A \simeq B$$
 has an inverse (for all types A and B)
- Higher inductive types are inductive types with constructors of paths

\[
S^1 := \text{base} : S^1 \\
\text{loop} : \text{Path}\ \text{base}\ \text{base}
\]
Homotopy type theory

What we have currently:

- Path as an inductive family generated by id
- Univalence as an axiom
- HITs defined as axioms
- Definitional reduction rules for HITs for point-constructors
- Implemented and usable in Agda and Coq
- Consistent

But:

- No canonicity
- Missing reduction rules
- A lot of proofs contain much more bureaucracy than they should
Goal of the talk

Show a way to better handle the bureaucracy in what we have currently.

Motivating example: proving that the torus is equivalent to the product of two circles.
Application of a function to a path

We can apply a function $f : A \to B$ to a path $p : \text{Path } a a'$

$$\text{ap } f \ p : \text{Path } (f \ a) (f \ a')$$

$$\text{ap } f \ (\text{id } \{a\}) = \text{id } \{f \ a\}$$

Some properties:

$$\text{ap{-id } p : \text{Path } (\text{ap } (\lambda x \to x) \ p) \ p}$$

$$\text{ap{-comp } f \ g \ p : \text{Path } (\text{ap } (f \circ g) \ p) \ (\text{ap } f \ (\text{ap } g \ p))}$$
Dependent application

We can apply a dependent function

\[f : (x : A) \to B \times x \]

to a path \(p : \text{Path } a \leftrightarrow a' \)

\[\text{apd } f \ p : \text{PathOver } B \ p \ (f \ a) \ (f \ a') \]

where the type

\[\text{PathOver } B \ p \ u \ u' \]

is the inductive family with constructor

\[\text{idt } \{u\} : \text{PathOver } B \ \text{id} \ u \ u \]
Paths in Sigma-types

For \((a, b)\) and \((a', b')\) two points in \(\Sigma (x : A) (B x)\), the type

\[
\text{Path} (a, b) (a', b')
\]

is equivalent to the type

\[
\Sigma (p : \text{Path} a a') (\text{PathOver} B p b b')
\]

We write \((p, ^1 q)\) for the 1-dimensional pairing.
Circle

\(S^1\text{-elim } B \ base^* \ loop^* : (x : S^1) \rightarrow B \ x \)

\((base^* : B \ base \ and \ loop^* : \text{PathOver } B \ loop \ base^* \ base^*)\)

\(S^1\text{-elim } B \ base^* \ loop^* \ base = base^* \)

\(\beta\text{loop-elim} : \text{Path } (\text{apd } (S^1\text{-elim } B \ base^* \ loop^*) \ loop) \ loop^* \)
PathOver in Path

PathOver \((\lambda x \to \text{Path} (u x) (v x)) \ p \ q \ q'\)

is equivalent to the type of squares

\[\text{Square} \ q \ (\text{ap} \ u \ p) \ (\text{ap} \ v \ p) \ q'\]

\[\text{Path} \ (u \ a) \ (v \ a) \ \text{Path} \ (u \ a') \ (v \ a')\]

We call in-PathOver-Path the map from Square to PathOver.
Introduction

Library

Example: the torus and the product of two circles

Squares

Square is an inductive family

\[
\text{Square} : \{A : \text{Type}\} \{w \ x \ y \ z : A\} \\
(l : \text{Path } w \ x) \ (t : \text{Path } w \ y) \\
(b : \text{Path } x \ z) \ (r : \text{Path } y \ z) \\
\rightarrow \ \text{Type}
\]

with constructor \text{ids} : \text{Square } \text{id id id id}.

We can define horizontal and vertical identities:

\[
\text{hid } \{p\} : \text{Square } p \ \text{id id id p}
\]

\[
\text{vid } \{p\} : \text{Square } \text{id p p id}
\]
Dependent squares, cubes, etc.

We have 2-dimensional application ap^2 and apd^2, and 2-dimensional pairing $(p,^2q)$. We need for that dependent squares

$$\text{SquareOver B sq l t b r}$$

And we also need cubes

$$\text{Cube left right back top bottom front}$$

Cubes arise both from PathOver in a Square type and from SquareOver in a Path type.
Properties of 2-dimensional \(\text{ap} \)

Recall that

\[
\text{ap-id} \; p : \text{Path} \left(\text{ap} \left(\lambda \; x \rightarrow x \right) \; p \right) \; p
\]

We cannot say \(\text{ap}^2\text{-id} \; \text{sq} : \text{Path} \left(\text{ap}^2 \left(\lambda \; x \rightarrow x \right) \; \text{sq} \right) \; \text{sq} \)

because the sides do not match.

We have to say

\[
\text{ap}^2\text{-id} \; \text{sq} : \text{Cube} \left(\text{ap}^2 \left(\lambda \; x \rightarrow x \right) \; \text{sq} \right) \; \text{sq} \\
\left(\text{ap-id} \; l \right) \left(\text{ap-id} \; t \right) \\
\left(\text{ap-id} \; b \right) \left(\text{ap-id} \; r \right)
\]
The torus

The torus is the type T generated by

\begin{align*}
a & : T \\
p & : \text{Path } a \ a \\
q & : \text{Path } a \ a \\
f & : \text{Square } p \ q \ q \ p
\end{align*}

We will use pattern matching notation to denote the use of eliminators.
From the torus to the product of circles

\[t_{2c} : T \rightarrow S^1 \times S^1 \]

\[t_{2c} a = (\text{base, base}) \]

\[\text{ap} \ t_{2c} \ p = (\text{loop},^1 \text{id}) \]

\[\text{ap} \ t_{2c} \ q = (\text{id},^1 \text{loop}) \]

\[\text{ap}^2 \ t_{2c} \ f = (\text{hid},^2 \text{vid}) \]

The equations for \(p \) and \(q \) hold only up to a path and the equation for \(f \) holds up to a cube.
From the product of circles to the torus

\[c2t : S^1 \to S^1 \to T \]

\[\text{c2t base} = \text{c2t-base} \]

\[\text{ap c2t loop} = \text{funext c2t-loop} \]

\[\text{c2t-base} : S^1 \to T \]

\[\text{c2t-base base} = a \]

\[\text{ap c2t-base loop} = q \]

\[\text{c2t-loop} : (x : S^1) \to \]

\[\text{Path (c2t-base x) (c2t-base x)} \]

\[\text{c2t-loop base} = p \]

\[\text{apd c2t-loop loop} = \text{in-PathOver-Path (βloop · f · βloop}^{-1}) \]
Compositions

Using the same technique, we can easily construct:

\[
\begin{align*}
c2t2c & : (x \ y : S^1) \to \text{Path} \ (t2c \ (c2t \ x \ y)) \ (x, \ y) \\
t2c2t & : (z : T) \to \text{Path} \ (c2t \ (t2c \ z)) \ z
\end{align*}
\]

Hence, \(T \) and \(S^1 \times S^1 \) are equivalent.
Conclusion

- Library functions inspired by cubical type theory make it easier to prove properties about 2-dimensional higher inductive types like the torus and about nested higher inductive types (the 3×3 lemma).

- A real cubical type theory, with the appropriate reduction rules and where dependent n-cubes are a primitive notion is still under investigation.

- The code is available at github.com/dlicata335/hott-agda in the directory lib/cubical/ and the file homotopy/TS1S1.agda.