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Initiality

Initiality conjecture
Given a type theory T, the term model SynT (or syntactic
category) is initial in the category of models of T.

It shows that there is a canonical way to interpret type theory into
a model with the appropriate structure.

Questions:
• What is a type theory?
• What is the category of models of a given type theory?
• What is the term model of a given type theory?
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Background / related work

• Streicher proved initiality for a rather simple dependent type
theory (1991).
• The extension to more complicated type theories has never
been checked in detail.
• Voevodsky noticed this gap and stressed that this is
something very important to prove. His (unfinished) series of
papers on C-systems is going in this direction.
• The Initiality Project started by Mike Shulman aims to get a
human-readable proof of initiality for a concrete type theory.
• Some work is also being done to define a general notion of
type theories (Bauer–Haselwarter–Lumsdaine, Brunerie)
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This talk

Goal:
• Take the type theory to be MLTT
• Give a proof of initiality for it, formalized in a proof assistant

Peter Lumsdaine suggested this project to the four of us in
October 2018, but differences in opinions led to two parallel
formalization projects:
• Menno de Boer and myself (in Agda, no HoTT, self
contained, based on contextual categories)
• Peter Lumsdaine and Anders Mörtberg (in Coq/Unimath,
based on categories with attributes)

This talk is about the Agda formalization.1

1https://github.com/guillaumebrunerie/initiality

https://github.com/guillaumebrunerie/initiality
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Results

The type theory we want to prove initiality for has
• Π-types
• Σ-types
• Natural numbers
• Identity types
• Infinite hierarchy of Tarski universes stable under the previous
operations

We have formalized everything, except J which is only half-way
formalized. . . 1

1https://github.com/guillaumebrunerie/initiality

https://github.com/guillaumebrunerie/initiality
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Meta-theory

The meta-theory used is the basic type theory of Agda 2.6.0.1
together with
• Prop (definitionally proof-irrelevant propositions1, like SProp

in Coq)
• function extensionality,
• propositional extensionality,
• quotients that compute.

1Definitional Proof-Irrelevance without K, G. Gilbert, J. Cockx, M. Sozeau,
N. Tabareau
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Prop

• If A : Prop and u, v : A, then u and v are definitionally equal
• Inductive families can be “squashed” to Prop and we can then
only eliminate out of them to another Prop.

We use Prop everywhere where it makes sense:
• Our identity type is Prop-valued.
• Derivability of pre-judgments is an inductive family in Prop.
• An equivalence relation on a type A is ∼ : A→ A→ Prop
which is reflexive, symmetric and transitive.

Note that we cannot define transport/subst, but we essentially
never need it in this formalization.

1Definitional Proof-Irrelevance without K, G. Gilbert, J. Cockx, M. Sozeau,
N. Tabareau
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Contextual categories1

Definition
A contextual category is a category with a grading on the objects
` : Ob→ N and some additional structure.
For instance for each A : Obn+1, we have ft(A) : Obn.

Idea:
• Objects represents contexts (of the given length)
• Morphisms represent context morphisms/total substitutions
• A type Γ ` A is represented as the context (Γ,A)
• A term Γ ` u : A is represented as the morphism

Γ ` (idΓ, u) : (Γ,A)

We represent contextual categories as the models of an essentially
algebraic theory with sorts Obn and Morn,m (for all n,m ∈ N) and
all the operations and equations needed.

1contextualcat.agda#CCat

contextualcat.agda#CCat
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Structured contextual categories1: type formers

For every type former we add one new operation and one new
equation. For instance for Π-types we add

PiStr : (B : Obn+2)→ Obn+1

PiStrft : (B : Obn+2)→ ft(PiStr(B)) = ft(ft(B))

or more uniformly:

PiStr : (Γ : Obn)(A : Obn+1)(Aft : ft(A) = Γ)
(B : Obn+2)(Bft : ft(B) = A)→ Obn+1

PiStrft : (Γ A Aft B Bft : [· · · ])→ ft(PiStr(Γ,A,Aft,B,Bft)) = Γ

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Structured contextual categories1: term formers

For every term former we add one new operation and two new
equations. For instance for the successor suc : N→ N, we add

sucStr : (Γ : Obn) (u : Morn,n+1) (us : is-section(u))
(u1 : ∂1(u) = NatStr(Γ))→ Morn,n+1

sucStrs : (Γ u us u1 : [· · · ])→ is-section(sucStr(Γ, u, us , u1))
sucStr1 : (Γ u us u1 : [· · · ])→ ∂1(sucStr(Γ, u, us , u1)) = NatStr(Γ)

where is-section(u) is the equality

comp(pp(∂1(u)), u) = id(∂0(u)).

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Structured contextual categories1: naturality and equalities

For every type/term former, we need one additional equation
(naturality). For instance:

PiStrNat : (g : Morm,n)(B : Obn+2)(p : ft(ft(B)) = ∂1(g))
→ star(g ,PiStr(B),_) = PiStr(star+(g ,B,_))

sucStrNat : (g : Morm,n)(u us u1 : [. . . ])(p : ∂0(u) = ∂1(g))
→ starTm(g , sucStr(u, us , u1),_) = sucStr(starTm(g , u,_),_,_)

(the operations star+ and starTm are derived from the structure of
contextual category)

Finally for equations (e.g. β/η-equality), we add the appropriate
equalities, replacing uses of substitution by star/starTm.

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Syntax1 and typing rules2

• Two syntactic classes of pre-types and pre-terms
• Variables are de Bruijn indices
• Syntax is well-scoped (e.g. TmExpr n is the type of pre-terms
with n variables) and fully annotated
• We use Agda’s reflection mechanism to prove most of the
syntactic lemmas
• We do not assume the substitution rules, but we prove that
they are admissible (and many other admissible rules)

1typetheory.agda and syntax.agda
2rules.agda

typetheory.agda
syntax.agda
rules.agda
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Quotients1

We postulate quotients as higher inductive types.

Given a type A and a Prop-valued equivalence relation ∼ on A, the
quotient A/∼ has two constructors
• proj : A→ A/∼
• eq : (a b : A)(r : a ∼ b)→ proj(a) = proj(b)

together with the corresponding dependent elimination rule, and
the (definitional) reduction rule for proj (using rewriting rules).

1quotients.agda

quotients.agda
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Effectiveness of quotients1

Lemma
Given a, b : A, if proj(a) = proj(b), then there exists r : a ∼ b.

Proof (encode-decode).
Given a : A, we define P : A/∼ → Prop by

P(proj(b)) = a ∼ b
apP(eq(r)) = [. . . ] : (a ∼ b) = (a ∼ c) (where r : b ∼ c)

(requires propositional extensionality)

Now we prove that given p : proj(a) = x , then P(x) holds (by
induction on p).

Finally, we can apply it to x = proj(b).

1quotients.agda#reflect

quotients.agda#reflect
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The term model1
• Obn is the quotient of the set of derivable contexts of length
n by the equivalence relation Γ ∼ ∆ ⇐⇒ ` Γ = ∆.
• Morn,m is the quotient of the set of derivable Γ ` δ : ∆ where
|Γ| = n and |∆| = m, by the appropriate equivalence relation.
• contextual category structure: use the corresponding syntaxic
operations

comp(θ, δ) = θ[δ] id(Γ) = idΓ ft((Γ,A)) = Γ

pp((Γ,A)) = idΓ star(δ, (∆,B)) = (Γ,B[δ]) pt = ∅

qq(δ, (∆,B)) = (δ, xn) ss((δ, u)) = (idΓ, u) pt-mor = ()
and check that they are invariant w.r.t. definitional equality.
• operations for type/term formers: use the type/term former

PiStr((Γ,A,B)) = (Γ,ΠAB) sucStr((id, u)) = (id, suc(u))
1termmodel.agda

termmodel.agda


Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Partial interpretation1

A partial function X ⇀ Y is defined as a map X → Partial(Y )
where

Partial(Y ) := ΣP:Prop(P → Y )

For a pre-type A, a pre-term u and an object X : Obn, we have

JAKX : Partial(Obn+1)

JuKX : Partial(Morn,n+1)

For variables we use the structure of contextual categories, and for
type/term formers we recursively interpret the arguments and then
use the appropriate function on structured contextual categories.

1partialinterpretation.agda

partialinterpretation.agda
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Example1

J_KTy : TyExpr n → Ob n → Partial (Ob (suc n))
J_KTm : TmExpr n → Ob n → Partial (Mor n (suc n))

J pi A B KTy Γ = do
[A] ← J A KTy Γ
[A]ft ← assume (ft [A] ≡ Γ)
[B] ← J B KTy [A]
[B]ft ← assume (ft [B] ≡ [A])
return (PiStr Γ [A] [A]ft [B] [B]ft)

J suc u KTm Γ = do
[u] ← J u KTm Γ
[u]s ← assume (is-section [u])
[u]1 ← assume (∂1 [u] ≡ NatStr Γ)
return (sucStr [u] [u]s [u]1)
1partialinterpretation.agda

partialinterpretation.agda
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Totality1

In what follows we assume that JΓK is defined, and X := JΓK.

Theorem
If Γ ` A is derivable, then JAKX is defined.
If Γ ` u : A is derivable, then JuKX is defined and ∂1(JuKX ) = JAKX .
If Γ ` A = A′ is derivable, then JAKX = JA′KX (if both are defined).
If Γ ` u = u′ : A is derivable, then JuKX = Ju′KX (if both are defined).

1totality.agda

totality.agda
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Interpretation of substitutions1

Theorem
If ∆ ` A and Γ ` δ : ∆, then JA[δ]KY is defined and moreover

JA[δ]KY = star(JδKX ,Y , JAKX ,_)

If ∆ ` u : A and Γ ` δ : ∆, then Ju[δ]KY is defined and moreover

Ju[δ]KY = starTm(JδKX ,Y , JuKX ,_)

1totality.agda

totality.agda
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Initiality (existence)1

Given an arbitrary structured contextual category C, we want to
construct a morphism from the syntactic category to C.
• Obn → ObC

n : use the partial interpretation of contexts, the
fact that it is actually total, and that it respects definitional
equalities,
• Morn,m → MorCn,m: same for context morphisms,
• contextual category structure: use the appropriate lemmas,
e.g. the substitution lemma, JidΓKX ,X = idX , and so on,
• additional operations corresponding to type/term formers: use
the fact that the partial interpretation function is
appropriately defined.

1initiality.agda#existence

initiality.agda#existence
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Initiality (uniqueness)1

Given two morphisms f , g from the syntactic category to C, we
want to prove that they are equal.
• (on objects)

f ((Γ,ΠAB)) = f (PiStr((Γ,A,B)))
= PiStr(f ((Γ,A,B)))
= PiStr(g((Γ,A,B)))
= g(PiStr((Γ,A,B)))
= g((Γ,ΠAB))

Not by induction on the length, but on the number of symbols
of the context (more or less. . . ).

1initiality.agda#uniqueness

initiality.agda#uniqueness
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Initiality (uniqueness)1

• (on morphisms)

f ((δ, u)) = f ((δ, xn) ◦ (id, u))
= f (qq(δ) ◦ (id, u))
= qq(f (δ)) ◦ f ((id, u))
= qq(g(δ)) ◦ g((id, u))
= g((δ, u))

For f ((id, u)) = g((id, u)): by induction on u, similarly to
uniqueness on objects

1initiality.agda#uniqueness

initiality.agda#uniqueness
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Conclusion

• We have a formalized proof of initiality for Π,Σ,N, universes,
and hopefully soon for Id.
• The most complicated parts are definitely Nat-elim and J, as
their typing rules are much more complicated than for the
other type/term formers. We still have to figure out how to
make typechecking of this proof efficient.
• There are various tricky inductions that we could have
overlooked without Agda. For instance, to prove totality for
the term J(A,P,d,a,b,p) we need it for Id(A,a,b), but it
is not a subterm.
• Some admissible rules are also tricky to prove, like

Γ ` A[δ] = A′[δ′] if ∆ ` A = A′ and Γ ` δ = δ′ : ∆.
• Strict propositions are very nice to use and seem quite helpful.
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