
Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

A formalization of the initiality conjecture in
Agda

Guillaume Brunerie
j.w.w. Menno de Boer, Peter Lumsdaine, and Anders Mörtberg

HoTT 2019, CMU, Pittsburgh
August 16, 2019

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality

Initiality conjecture
Given a type theory T, the term model SynT (or syntactic
category) is initial in the category of models of T.

It shows that there is a canonical way to interpret type theory into
a model with the appropriate structure.

Questions:
• What is a type theory?
• What is the category of models of a given type theory?
• What is the term model of a given type theory?

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality

Initiality conjecture
Given a type theory T, the term model SynT (or syntactic
category) is initial in the category of models of T.

It shows that there is a canonical way to interpret type theory into
a model with the appropriate structure.

Questions:
• What is a type theory?
• What is the category of models of a given type theory?
• What is the term model of a given type theory?

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality

Initiality conjecture
Given a type theory T, the term model SynT (or syntactic
category) is initial in the category of models of T.

It shows that there is a canonical way to interpret type theory into
a model with the appropriate structure.

Questions:
• What is a type theory?
• What is the category of models of a given type theory?
• What is the term model of a given type theory?

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Background / related work

• Streicher proved initiality for a rather simple dependent type
theory (1991).
• The extension to more complicated type theories has never
been checked in detail.
• Voevodsky noticed this gap and stressed that this is
something very important to prove. His (unfinished) series of
papers on C-systems is going in this direction.
• The Initiality Project started by Mike Shulman aims to get a
human-readable proof of initiality for a concrete type theory.
• Some work is also being done to define a general notion of
type theories (Bauer–Haselwarter–Lumsdaine, Brunerie)

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

This talk

Goal:
• Take the type theory to be MLTT
• Give a proof of initiality for it, formalized in a proof assistant

Peter Lumsdaine suggested this project to the four of us in
October 2018, but differences in opinions led to two parallel
formalization projects:
• Menno de Boer and myself (in Agda, no HoTT, self
contained, based on contextual categories)
• Peter Lumsdaine and Anders Mörtberg (in Coq/Unimath,
based on categories with attributes)

This talk is about the Agda formalization.1

1https://github.com/guillaumebrunerie/initiality

https://github.com/guillaumebrunerie/initiality

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

This talk

Goal:
• Take the type theory to be MLTT
• Give a proof of initiality for it, formalized in a proof assistant

Peter Lumsdaine suggested this project to the four of us in
October 2018, but differences in opinions led to two parallel
formalization projects:
• Menno de Boer and myself (in Agda, no HoTT, self
contained, based on contextual categories)
• Peter Lumsdaine and Anders Mörtberg (in Coq/Unimath,
based on categories with attributes)

This talk is about the Agda formalization.1

1https://github.com/guillaumebrunerie/initiality

https://github.com/guillaumebrunerie/initiality

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Results

The type theory we want to prove initiality for has
• Π-types
• Σ-types
• Natural numbers
• Identity types
• Infinite hierarchy of Tarski universes stable under the previous
operations

We have formalized everything, except J which is only half-way
formalized. . . 1

1https://github.com/guillaumebrunerie/initiality

https://github.com/guillaumebrunerie/initiality

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Meta-theory

The meta-theory used is the basic type theory of Agda 2.6.0.1
together with
• Prop (definitionally proof-irrelevant propositions1, like SProp

in Coq)
• function extensionality,
• propositional extensionality,
• quotients that compute.

1Definitional Proof-Irrelevance without K, G. Gilbert, J. Cockx, M. Sozeau,
N. Tabareau

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Prop

• If A : Prop and u, v : A, then u and v are definitionally equal
• Inductive families can be “squashed” to Prop and we can then
only eliminate out of them to another Prop.

We use Prop everywhere where it makes sense:
• Our identity type is Prop-valued.
• Derivability of pre-judgments is an inductive family in Prop.
• An equivalence relation on a type A is ∼ : A→ A→ Prop
which is reflexive, symmetric and transitive.

Note that we cannot define transport/subst, but we essentially
never need it in this formalization.

1Definitional Proof-Irrelevance without K, G. Gilbert, J. Cockx, M. Sozeau,
N. Tabareau

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Contextual categories1

Definition
A contextual category is a category with a grading on the objects
` : Ob→ N and some additional structure.
For instance for each A : Obn+1, we have ft(A) : Obn.

Idea:
• Objects represents contexts (of the given length)
• Morphisms represent context morphisms/total substitutions
• A type Γ ` A is represented as the context (Γ,A)
• A term Γ ` u : A is represented as the morphism

Γ ` (idΓ, u) : (Γ,A)

We represent contextual categories as the models of an essentially
algebraic theory with sorts Obn and Morn,m (for all n,m ∈ N) and
all the operations and equations needed.

1contextualcat.agda#CCat

contextualcat.agda#CCat

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Structured contextual categories1: type formers

For every type former we add one new operation and one new
equation. For instance for Π-types we add

PiStr : (B : Obn+2)→ Obn+1

PiStrft : (B : Obn+2)→ ft(PiStr(B)) = ft(ft(B))

or more uniformly:

PiStr : (Γ : Obn)(A : Obn+1)(Aft : ft(A) = Γ)
(B : Obn+2)(Bft : ft(B) = A)→ Obn+1

PiStrft : (Γ A Aft B Bft : [· · ·])→ ft(PiStr(Γ,A,Aft,B,Bft)) = Γ

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Structured contextual categories1: term formers

For every term former we add one new operation and two new
equations. For instance for the successor suc : N→ N, we add

sucStr : (Γ : Obn) (u : Morn,n+1) (us : is-section(u))
(u1 : ∂1(u) = NatStr(Γ))→ Morn,n+1

sucStrs : (Γ u us u1 : [· · ·])→ is-section(sucStr(Γ, u, us , u1))
sucStr1 : (Γ u us u1 : [· · ·])→ ∂1(sucStr(Γ, u, us , u1)) = NatStr(Γ)

where is-section(u) is the equality

comp(pp(∂1(u)), u) = id(∂0(u)).

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Structured contextual categories1: naturality and equalities

For every type/term former, we need one additional equation
(naturality). For instance:

PiStrNat : (g : Morm,n)(B : Obn+2)(p : ft(ft(B)) = ∂1(g))
→ star(g ,PiStr(B),_) = PiStr(star+(g ,B,_))

sucStrNat : (g : Morm,n)(u us u1 : [. . .])(p : ∂0(u) = ∂1(g))
→ starTm(g , sucStr(u, us , u1),_) = sucStr(starTm(g , u,_),_,_)

(the operations star+ and starTm are derived from the structure of
contextual category)

Finally for equations (e.g. β/η-equality), we add the appropriate
equalities, replacing uses of substitution by star/starTm.

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Syntax1 and typing rules2

• Two syntactic classes of pre-types and pre-terms
• Variables are de Bruijn indices
• Syntax is well-scoped (e.g. TmExpr n is the type of pre-terms
with n variables) and fully annotated
• We use Agda’s reflection mechanism to prove most of the
syntactic lemmas
• We do not assume the substitution rules, but we prove that
they are admissible (and many other admissible rules)

1typetheory.agda and syntax.agda
2rules.agda

typetheory.agda
syntax.agda
rules.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Quotients1

We postulate quotients as higher inductive types.

Given a type A and a Prop-valued equivalence relation ∼ on A, the
quotient A/∼ has two constructors
• proj : A→ A/∼
• eq : (a b : A)(r : a ∼ b)→ proj(a) = proj(b)

together with the corresponding dependent elimination rule, and
the (definitional) reduction rule for proj (using rewriting rules).

1quotients.agda

quotients.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Effectiveness of quotients1

Lemma
Given a, b : A, if proj(a) = proj(b), then there exists r : a ∼ b.

Proof (encode-decode).
Given a : A, we define P : A/∼ → Prop by

P(proj(b)) = a ∼ b
apP(eq(r)) = [. . .] : (a ∼ b) = (a ∼ c) (where r : b ∼ c)

(requires propositional extensionality)

Now we prove that given p : proj(a) = x , then P(x) holds (by
induction on p).

Finally, we can apply it to x = proj(b).

1quotients.agda#reflect

quotients.agda#reflect

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

The term model1
• Obn is the quotient of the set of derivable contexts of length
n by the equivalence relation Γ ∼ ∆ ⇐⇒ ` Γ = ∆.
• Morn,m is the quotient of the set of derivable Γ ` δ : ∆ where
|Γ| = n and |∆| = m, by the appropriate equivalence relation.
• contextual category structure: use the corresponding syntaxic
operations

comp(θ, δ) = θ[δ] id(Γ) = idΓ ft((Γ,A)) = Γ

pp((Γ,A)) = idΓ star(δ, (∆,B)) = (Γ,B[δ]) pt = ∅

qq(δ, (∆,B)) = (δ, xn) ss((δ, u)) = (idΓ, u) pt-mor = ()
and check that they are invariant w.r.t. definitional equality.
• operations for type/term formers: use the type/term former

PiStr((Γ,A,B)) = (Γ,ΠAB) sucStr((id, u)) = (id, suc(u))
1termmodel.agda

termmodel.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Partial interpretation1

A partial function X ⇀ Y is defined as a map X → Partial(Y)
where

Partial(Y) := ΣP:Prop(P → Y)

For a pre-type A, a pre-term u and an object X : Obn, we have

JAKX : Partial(Obn+1)

JuKX : Partial(Morn,n+1)

For variables we use the structure of contextual categories, and for
type/term formers we recursively interpret the arguments and then
use the appropriate function on structured contextual categories.

1partialinterpretation.agda

partialinterpretation.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Partial interpretation1

A partial function X ⇀ Y is defined as a map X → Partial(Y)
where

Partial(Y) := ΣP:Prop(P → Y)

For a pre-type A, a pre-term u and an object X : Obn, we have

JAKX : Partial(Obn+1)

JuKX : Partial(Morn,n+1)

For variables we use the structure of contextual categories, and for
type/term formers we recursively interpret the arguments and then
use the appropriate function on structured contextual categories.

1partialinterpretation.agda

partialinterpretation.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Example1

J_KTy : TyExpr n → Ob n → Partial (Ob (suc n))
J_KTm : TmExpr n → Ob n → Partial (Mor n (suc n))

J pi A B KTy Γ = do
[A] ← J A KTy Γ
[A]ft ← assume (ft [A] ≡ Γ)
[B] ← J B KTy [A]
[B]ft ← assume (ft [B] ≡ [A])
return (PiStr Γ [A] [A]ft [B] [B]ft)

J suc u KTm Γ = do
[u] ← J u KTm Γ
[u]s ← assume (is-section [u])
[u]1 ← assume (∂1 [u] ≡ NatStr Γ)
return (sucStr [u] [u]s [u]1)
1partialinterpretation.agda

partialinterpretation.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Totality1

In what follows we assume that JΓK is defined, and X := JΓK.

Theorem
If Γ ` A is derivable, then JAKX is defined.
If Γ ` u : A is derivable, then JuKX is defined and ∂1(JuKX) = JAKX .
If Γ ` A = A′ is derivable, then JAKX = JA′KX (if both are defined).
If Γ ` u = u′ : A is derivable, then JuKX = Ju′KX (if both are defined).

1totality.agda

totality.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Interpretation of substitutions1

Theorem
If ∆ ` A and Γ ` δ : ∆, then JA[δ]KY is defined and moreover

JA[δ]KY = star(JδKX ,Y , JAKX ,_)

If ∆ ` u : A and Γ ` δ : ∆, then Ju[δ]KY is defined and moreover

Ju[δ]KY = starTm(JδKX ,Y , JuKX ,_)

1totality.agda

totality.agda

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality (existence)1

Given an arbitrary structured contextual category C, we want to
construct a morphism from the syntactic category to C.
• Obn → ObC

n : use the partial interpretation of contexts, the
fact that it is actually total, and that it respects definitional
equalities,
• Morn,m → MorCn,m: same for context morphisms,
• contextual category structure: use the appropriate lemmas,
e.g. the substitution lemma, JidΓKX ,X = idX , and so on,
• additional operations corresponding to type/term formers: use
the fact that the partial interpretation function is
appropriately defined.

1initiality.agda#existence

initiality.agda#existence

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality (uniqueness)1

Given two morphisms f , g from the syntactic category to C, we
want to prove that they are equal.
• (on objects)

f ((Γ,ΠAB)) = f (PiStr((Γ,A,B)))
= PiStr(f ((Γ,A,B)))
= PiStr(g((Γ,A,B)))
= g(PiStr((Γ,A,B)))
= g((Γ,ΠAB))

Not by induction on the length, but on the number of symbols
of the context (more or less. . .).

1initiality.agda#uniqueness

initiality.agda#uniqueness

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Initiality (uniqueness)1

• (on morphisms)

f ((δ, u)) = f ((δ, xn) ◦ (id, u))
= f (qq(δ) ◦ (id, u))
= qq(f (δ)) ◦ f ((id, u))
= qq(g(δ)) ◦ g((id, u))
= g((δ, u))

For f ((id, u)) = g((id, u)): by induction on u, similarly to
uniqueness on objects

1initiality.agda#uniqueness

initiality.agda#uniqueness

Introduction Structured contextual categories Syntax and the term model Partial interpretation and totality Initiality Conclusion

Conclusion

• We have a formalized proof of initiality for Π,Σ,N, universes,
and hopefully soon for Id.
• The most complicated parts are definitely Nat-elim and J, as
their typing rules are much more complicated than for the
other type/term formers. We still have to figure out how to
make typechecking of this proof efficient.
• There are various tricky inductions that we could have
overlooked without Agda. For instance, to prove totality for
the term J(A,P,d,a,b,p) we need it for Id(A,a,b), but it
is not a subterm.
• Some admissible rules are also tricky to prove, like

Γ ` A[δ] = A′[δ′] if ∆ ` A = A′ and Γ ` δ = δ′ : ∆.
• Strict propositions are very nice to use and seem quite helpful.

	Introduction
	Structured contextual categories
	Syntax and the term model
	Partial interpretation and totality
	Initiality
	Conclusion

